On Multisequence Shift Register Synthesis and Generalized-Minimum-Distance Decoding of Reed-Solomon Codes

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unambiguous Decoding of Generalized Reed–Solomon Codes Beyond Half the Minimum Distance

The Schmidt–Sidorenko–Bossert scheme extends a low-rate Reed–Solomon code to an Interleaved Reed–Solomon code and achieves the decoding radius of Sudan’s original list decoding algorithm while the decoding result remains unambiguous. We adapt this result to the case of Generalized Reed– Solomon codes and calculate the parameters of the corresponding Interleaved Generalized Reed–Solomon code. Fu...

متن کامل

Efficient Erasure Decoding for Generalized Reed Solomon Codes

We present an efficient erasure decoding algorithm for generalized Reed Solomon codes constructed by utilizing the structure of the inverse of the VanderMonde matrices. Given an [n, k] generalized Reed Solomon code, decoding for r erasures, where r = n − k, requires rk + n Galois field multiplications and r(k − 1) Galois field additions after setting up the decoding structures for an erasure pa...

متن کامل

Efficient decoding of Reed-Solomon codes beyond half the minimum distance

A list decoding algorithm is presented for [ ] Reed–Solomon (RS) codes over GF ( ), which is capable of correcting more than ( ) 2 errors. Based on a previous work of Sudan, an extended key equation (EKE) is derived for RS codes, which reduces to the classical key equation when the number of errors is limited to ( ) 2 . Generalizing Massey’s algorithm that finds the shortest recurrence that gen...

متن کامل

E cient Decoding of Reed Solomon Codes Beyond Half the Minimum Distance

A list decoding algorithm is presented for n k Reed Solomon RS codes over GF q which is capable of correcting more than b n k c errors Based on a previous work of Sudan an extended key equation EKE is derived for RS codes which reduces to the classi cal key equation when the number of errors is limited to b n k c Generalizing Massey s algorithm that nds the shortest recurrence that generates a ...

متن کامل

Counting generalized Reed-Solomon codes

In this article we count the number of [n, k] generalized Reed– Solomon (GRS) codes, including the codes coming from a non-degenerate conic plus nucleus. We compare our results with known formulae for the number of [n, 3] MDS codes with n = 6, 7, 8, 9.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Finite Fields and Their Applications

سال: 1995

ISSN: 1071-5797

DOI: 10.1006/ffta.1995.1035